
LECTURE XXIII

1. Recap and Special Series

1.1. De�nition of Sequence of Partial Sums, SN . Given a series
∑∞

n=1 an, its N
th partial sum is de�ned

as

SN =

N∑
n=1

an

One should view SN as a sequence in N .

S1 = a1

S2 = a1 + a2

.

.

SN = a1 + · · ·+ aN

1.2. Special Series.

Example 1. Geometric Series with ratio r:

a+ ar + ar2 + ar3 + · · · = a

∞∑
n=1

rn−1

Partial sum

SN = a

N∑
n=1

rn−1 = a+ ar + ar2 + · · ·+ arN−1

Multiply by r to get

rSN = ar + ar2 + · · ·+ arN−1 + arN

Then via cancellation of common terms, we must have

SN − rSN = a− arN = a
(
1− rN

)
Solving for

SN =
a
(
1− rN

)
1− r

This formula is true for any r. For example, take r = 2 with a = 2 for 5 terms, we have essentially S5, i.e.

S5 = 2 + 4 + 8 + 16 + 32 =

5∑
n=1

2 (2)
n−1

=
2
(
1− 25

)
1− 2

= 64

Is it true?

S5 = 64

by brute force addition.
This formula becomes amazing when |r| < 1 because,

∞∑
n=1

arn−1 = lim
N→∞

N∑
n=1

arn−1 = lim
N→∞

SN = lim
N→∞

a
(
1− rN

)
1− r

=
a

1− r

providing a formula for the sum of an in�nite geometric series with ratio |r| < 1.
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Example 2. Telescoping series.
∞∑

n=1

1

n (n+ 1)
=

∞∑
n=1

(
1

n
− 1

n+ 1

)
Its N th partial sum is

SN =

N∑
n=1

(
1

n
− 1

n+ 1

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+· · ·+

(
1

N − 1
− 1

N

)
+

(
1

N
− 1

N + 1

)
= 1− 1

N + 1

with all middle terms cancelling out. Knowing that the limit of SN is the sum of the series, it's easy to see
that

lim
N→∞

SN = lim
N→∞

(
1− 1

N + 1

)
= 1

2. Divergence Test

When the terms in a series (the sequence being added) becomes too big as n increases, the series may fail
to converge.

∞∑
n=1

n+ 1

n

One way to show that this series diverges is to compare its partial sum to known ones. One trivial partial
sum you can use is simply the sum of all 1's.

SN =

N∑
n=1

n+ 1

n
≥

N∑
n=1

1 = N

Therefore,
lim

N→∞
SN ≥ lim

N→∞
N =∞

which shows divergence.
Another way to deduce divergence is to check the limit of the sequence being added.

Theorem 3. (The nth term test for divergence). If limn→∞ an fails to exist or is di�erent from zero, then∑∞
n=1 an diverges (not necessarily to ∞).

The logically equivalent statement of this theorem is a powerful statement as well.

Theorem 4. If
∑∞

n=1 an converges, then an → 0.

Remark. Poll: True or false. If an → 0, then
∑∞

n=1 an converges.

Example. False! Counterexample:
∑∞

n=1
1
n , the harmonic series, diverges, yet indeed

1
n → 0. What should

you conclude about
∑∞

n=1 an then, if an → 0? ABSOLUTELY NOTHING!

How do we use the two above powerful theorems?

Example 5.
∞∑

n=1

(−1)n+1

diverges because the sequence inside
lim
n→∞

an = lim
n→∞

(−1)n+1

does not exist (it alternates). If the limit of the sequence (being added) fails to exists, it satis�es the condition
of Theorem 3 and therefore, the conclusion of Theorem 3 follows. The series diverges.

Example 6.
∞∑

n=1

n

n+ 1

diverges because by theorem 3

lim
n→∞

n

n+ 1
= 1 6= 0

a limit di�erent from zero.
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3. Operations of Multiple Series

If
∑

an = A and
∑

bn = B, then

(1) Sum/Di�erence rule:
∑

(an ± bn) =
∑

an ±
∑

bn = A±B.
(2) Constant Multiple:

∑
kan = k

∑
an = kA.

Examples are easy to follow. A complicated looking series usually requires few steps of simpli�cation before
using the above rules. For example,

Example.
∞∑

n=1

2n−1 − 6

6n

The very �rst thing to do is to divide.
∞∑

n=1

(
2n−1

6n
− 6

6n

)
=

∞∑
n=1

(
2n · 2−1

6n
− 1

6n−1

)

=

∞∑
n=1

(
1

2

(
1

3

)n

− 1

6n−1

)

=
1

2

∞∑
n=1

(
1

3

)n

−
∞∑

n=1

(
1

6

)n−1

=
1

2

(
1/3

1− (1/3)

)
− 1

1− (1/6)

= −19

20

Poll: Can two divergent series
∑

an and
∑

bn yield
∑

(an + bn) being convergent?

Solution. Yes. Simply choose bn = −an.∑
(an + bn) =

∑
(an − an) = 0

4. One Important Characteristic of a Series

Poll: Will the �rst n terms of a series a�ect the convergence behaviour of the series?

Solution. No. They add up to a �nite number. There are still in�nite number of terms yet to come. In
essence,

∞∑
n=1

an = a1 + a2 + · · ·+ aN +

∞∑
n=N+1

an

Rearranging, putting the tail of a series on one side, we see
∞∑

n=N+1

an =

∞∑
n=1

an − (a1 + a2 + · · ·+ aN )

Now, if the original series converges, then
∑∞

n=1 an = L for some number L. Then certainly, the tail converges
to L− (a1 + a2 + · · ·+ aN ). On the other hand, if the tail converges,

∞∑
n=N+1

an = K

then
∞∑

n=1

an = K + (a1 + a2 + · · ·+ aN )

which is �nite as well, showing convergences.
Therefore, only the tails of a series a�ects its convergence.


